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Synopsis 

Thermal ignition theory has been extended to include free-radical copolymerizations resulting 
in dimensionless criteria for runaway and ignition. These criteria were verified by computer sim- 
ulation and preliminary experimentation. Approximate, but greatly simplified, material and energy 
balances describing nonisothermal copolymerizations were developed which are similar in form to 
those describing nonisothermal homopolymerizations. Regions of close agreement, as well as dis- 
agreement, between conversion and temperature histories from these approximations and those 
from the exact balances are described. 

INTRODUCTION 

This work is concerned with nonuniform temperature in chain-addition co- 
polymerizations, and especially with the phenomenon frequently termed thermal 
runaway (R-A). Thermal runaway has been defined in a previous paper on 
homopolymerizations' as a reaction with temperature profile T (  t ) having upward 
concavity. Potentially unstable R-A, or thermal ignition (IG), has thus been 
defined as parametrically sensitive R-A. 

Our earlier work on homopolymerizations1-4 combined a Semenov-type 
analysis with co'mputer simulations and resulted in dimensionless criteria in 
terms of parameter groupings which characterized R-A and IG in chain-addition 
polymerizations. These criteria are 

a < 2  (1) 

B > 20 ( 2 )  

b > 100 ( 3 )  

where dimensionless groups, a, B, and b are defined in the text. Thus, R-A oc- 
curs when inequality (1) is satisifed and IG, when inequalities (2 )  and (3) are 
additionally satisifed. 

Graphical IG boundaries were generated, similar to the familiar explosion-limit 
curves for explosive gases, which spanned a wide range of values for the above 
and other pertinent parameters typical of many common free radical-type 
monomer-initiator systems. The system styrene-benzoyl peroxide (S/BP) was 
used to verify predicted R-A and IG behavior experimentally.4 Laboratory data 
demonstrated that key dimensionless groupings successfully predicted R-A and 
R-A transitions and defined regions of disappearing R-A sensitivity. Experi- 

Journal of Applied Polymer Science, Vol. 23,661-686 (1979) 
0 1979 ,John Wiley & Sons, Inc. 002 1/8995/79/0023-066 1$01 .OO 



662 SEBASTIAN AND BIESENBERGER 

TABLE I 
Elementary Kinetic Steps 

Initiation 

kd  kd  
mo + R* or I + 2R* 

k,  1 
R * + A + A *  R * + B % B *  

Propagation 

Termination 
Ultimate effect (geometric mean and phi-factor) 

k i l l  
-A* + *A- + 

kt12 
k t ,  -A* + *B- + 

kt22 -B* + *R- ---f 

ktLl 1 
Penultimate effect 

kt1221 
-AB* + *BA- + 

kt2112 
-BA* + *AR- 4 

k t i n i  
-AA* + *AA- _f 

ktLJJi  
k t z m  

-BB* + *BB- --+ 
ktriii 

kt1112 kt1121 

kt2221 k . . . (  kt2212 

-AA* + *AB- d -AA* + *RA- + 
tu,, 

-BE* + *RA- + -BB* + *AB- + 
ktuij 

mental IG boundaries, determined a t  several levels of initiator concentration, 
showed close agreement with semitheoretical boundaries. 

The present paper attempts to analyze in a general way the R-A behavior of 
chain-addition copolymerizations, which are complicated by problems of com- 
position drift and obscure kinetic mechanisms, in addition to degree of poly- 
merization drift. It may thus be viewed as a sequel to reference 1. In subsequent 
papers5s6 we shall present the results of numerous computer simulation studies 
and experiments. 

KINETIC MODEL 
As with our earlier work on homopolymerizations, we have found that kinetic 

phenomena such as chain transfer, gel effect, thermal initiation, etc., while im- 
portant factors in determining the properties of polymer products, play only a 
small role in shaping the entire thermal trajectory of polymerizations and have 
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TABLE I1 
Rate Functions 

where 

[A*] = [AA*] + [BA*] 

[B*] = [BB*] + [AB*] 

QSSA leads to symmetry: 

Rplz = RPzl or kp~z[A*I[B1 = kpzl[B*IIAl 

Rp = R p 1 +  Rpz = kpll[A*I[Al + 2kplz[A*I[BI + kpzz[B*I[BI 

Termination 
Ultimate effect (geometric mean and phi-factor): 

Rt = ktii[A*I2 + 2ktiz[A*I[B*I + htzz[B*12 

Penultimate effect: 

Rt = ktllll[AA*12 + htz11z[BA*IZ + 2kt1llz[AA*][BA*] + 2htll~1[AA*][BB*] 
+ 2ktz121[BA*I[AB*] + 2htzziz[BB*][BA*I + 2~t~~z l [BB*l [AB*l  + ~ ~ I Z Z ~ [ A B * ] '  + ~ ~ z z z z [ R R * I ~  

Special case: reduces to ultimate effect case 

when kti;kl  kt;k = k t k ;  for i = 1 or 2, j = 1 or 2, k = 1 or 2, and 1 = 1 or 2 

virtually no effect on the characterization of R-A and IG, per se, based upon the 
most elementary steps of initiation, propagation, and termination. We thus 
eliminate them from consideration here as we have done earlier.1-4 

The kinetic steps used and associated rate functions are detailed in Tables 
I and 11. The rate of initiator decomposition was assumed to be the same in ei- 
ther comonomer. Thus, the rate of initiation is independent of comonomer 
composition. While the propagation steps are generally agreed upon, the ter- 
mination process is as yet not fully understood. Several models have appeared 
in the literature7-16 which reproduce experimental rate data with varying degrees 
of success. In the earliest treatment: it was presumed that termination rates 
depended only upon terminal groups on reacting radicals. Homopolymerization 
rate constants were thus applied to termination of like radicals during copoly- 
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TABLE I11 
Termination Models 

merization. On statistical grounds it has been argued that cross-termination 
rate constants should be the geometric mean of the two homopolymerization 
constants? 

K t l 2  = (htllkt22)1/2 (4) 

While satisfactory for styrene-cu -methylstyrene copolymerization, this approach 
was found to be inadequate in describing many other systems. 

It was subsequently postulated that polar effects might tend to influence the 
cross-termination reaction beyond the mere statistical probability that the unlike 
radicals meet and react. A constant phi-factor was introduced to modify the 
geometric mean7? 

ht l2  = cp(htll&?2)1/2 (5) 
where cp > 1 indicates a favored cross termination. Rate data for many systems 
were reproduced with this simple modification. It was found to be particularly 
useful for the system styrene-methyl methacrylate with cp = 13. For other 
systems, however, it was found necessary to vary cp over a wide range of values 
with varying comonomer feed compositions. For example, cp took on values 
between 10 and 150 in order to reproduce initial rate data for the system sty- 
rene-butyl acrylate. Variations of cp with temperature have not as yet been 
considered. 
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TABLE IV 
Expressions for Active Intermediates 

665 

Geometric Mean 

Phi-Factor 

Penultimate Effect 

Many researchers have argued1°-14 that the copolymer termination process 
is diffusion controlled. SeveralloJ3 have proposed expressions for rate constants 
as function of the composition of unreacted comonomers. Thus, the “constants” 
would not only vary with feed composition but would drift with changes in co- 
monomer composition during the course of reaction. 

Most recently, the penultimate-effect model was proposed.14 This model does 
not attempt to resolve the question of chemical versus diffusion control. I t  is 
generally agreed that segmental diffusion of chain ends is the rate-limiting step 
when termination is diffusion controlled. The penultimate-effect model pos- 
tulates that the polar and steric characteristics of a chemically controlled ter- 
mination process depend upon the nature of the last four carbon-carbon bonds 
in each chain involved. Thus, for vinyl comonomers with two carbon atoms per 
repeat unit, ten termination steps are distinguishable. They appear in Table 
I. All termination rate constants may be expressed in terms of four independent 
ht values for those reactions in which the ultimate and penultimate repeat units 
of both active intermediates are identical, as shown in Table 111. The develop- 
ment of termination rate expressions for all modes of termination previously 
discussed is summarized in Tables I1 and 111. We note that with the appropriate 
assumptions all expressions reduce to those for the geometric mean. 

Rate functions for termination, Rt, are needed in the kinetic modeling of co- 
polymerizations when applying the quasi-stationary state approximation 
(QSSA), R; = Rt, to eliminate concentration terms for active intermediates [A*] 
and [B*] in the rate equations, just as they are in modeling homopolymerizations. 
By applying the QSSA to the total population of intermediates (as above) and 
to the population of each kind of intermediate as well (symmetry condition in 
Table 11), we obtain the expressions for the concentration of each intermediate 
shown in Table IV for the three termination models discussed. 
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TABLE V 
Rate Functions and Balance Equations for Copolymerizations 

d[mol - kd[mo] 
dt 

Comonomers 

d[ml dhil d[mzl 
dt dt dt 

Thermal Energy 

where 1 3 VIA, 

In the present study we use the phi-factor model throughout. When appro- 
priate, parallel expressions for the other models will be tabulated for complete- 
ness. While the penultimate-effect model appears to be the best one, since it 
alone accounts for the influence of temperature variations on cross-termination 
reactions, requisite data for the model parameters are scant. Only those for the 
systems styrene-methyl methacrylate and styrene-butyl acrylate seem to be 
available.14J5 

However, in the analysis that follows, the form used is general and not tied 
to any one particular system. It should apply regardless of the termination mode 
chosen. The functional form of the parameters will accommodate to changes 
in mechanism, but critical values of the key parameters will remain the same. 

BALANCE EQUATIONS 

As in our earlier work,l we write material and energy balances for a well-mixed 
batch reactor with heat transfer to a reservoir a t  constant temperature TR. All 
thermodynamic properties were again taken to be constant. We also applied 
the long-chain approximation (LCA), Ril << R,I, Ri2 << R,2, and Ri << R,, to 
obtain the following approximations: 
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- d [ B ] / d t  = Ri2 + Rp2 z Rp2 (7 1 
- d [ m ] / d t  = Ri + Rp z R, (8) 

where [m] = [A] + [B]. By making use of the expressions in Tables I1 and IV, 
the balance equations listed in Table V were obtained. We point out that the 
effects of the termination mechanism are all lumped into function H. 

By virtue of the LCA, the heat of copolymerization in the thermal energy 
balance was attributed entirely to the four propagation reactions. The values 
of AHii for the mutual propagation reactions were assumed to be the same as for 
the corresponding homopolymerizations. Concerning cross-propagation 
enthalpies AHij, data are available for their sum, A H 1 2  + AH21, for a number 
of comonomer systems.16J7 While we have used them separately in formulating 
our balances for convenience of nomenclature, application of the QSSA leads 
to the conclusion that knowledge of their sum is sufficient to perform all com- 
putations. Thus, from the symmetry condition in Table 11, 

(9) 
As before,l we identify characteristic times (time constants) for the process 

by reducing all concentrations and temperatures in the balances of Table V to 
dimensionless form, thus rendering all equations semidimensionless (units of 
reciprocal time). The results are listed in Tables VI and VII. Of the two types 
of dimensionless temperature employed in our earlier w ~ r k , l - ~  T' and 0 = E'T', 
it was necessary in the present study to use the former since there is no a priori 
criterion for choosing an appropriate dimensionless activation energy E' for 
copolymerization from among the four alternatives available. We note that a 
change in termination mode does not affect the general form of the balances. 
Function H is a factorable term common to all dimensionless rate expressions 
and contains all parameters specific to a particular mechanism. 

m12Rp12 + AH21Rp21 = ( A H 1 2  + AH21)Rpij 

TABLE VIII 
Lumped Characteristic Times 

+-+-+- I-' 1 1 1  
Ac = [G 

XClZ XCZl XC22 
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TABLE IX 
Characteristic Times and Dimensionless Groups not Defined in Text 

TABLE X 
Kinetic Constants and Physical Data 

Comonomers rl r7 

WAN 2.56 exp (-599/T) 6.67 X exp (2184/T) 23 34.7 
S/MMA 1.83 exp (-450/T) 1.27 exp (-340/T) 13 31.7 
AN/MMA 0.59 exp (260/T) 1.94 exp (-916/T) 200 28.4 

Mono- kP1 kt, Imlo, 
mer I./mole-sec I./mole-sec mole/l. p,  g/cc C,, callg -AH, kcal 

S 1.057 X lo7 1.255 X lo9 8.7 0.91 0.4 16.7 

MMA 9 x 1 0 5  1.1 x 108 9.5 0.95 0.3 13.5 
exp (-3557/T) exp (-843/T) 

exp (-2365/T) exp (-604/T) 
AN 3 x  107 3.3 x 10'2 15.2 0.81 0.4 18.4 

exp (-2063/T) exp (-2718/T) 
Initiator kd, sec-' 

BP 2 X 1013 exp (-15098/T) 
AIBN 1015 exp (-15350/T) 
DTBP 4.3 X exp (-18620/T) 

If we employ a shorthand notation here, it is possible to write the thermal 
energy balance for copolymerization as in Table VII: 

Ge(T' , t )  - Re(T')  



THERMAL IGNITION PHENOMENA 671 

: 

9 

0 

- 9. 

B r 4 1  
C=0.025 

A A A 
N- O 0 0 

A 26/14 W A N  

o 38/62 AWlMYA 

Fig. 1. Dimensionless runaway boundary ucr vs. b. 

similar to that for homopolymerizationl : 

Ge(T’, t )  - Re(T’) (13) 
where the dimensionless rate function R:, is again written in a form 

Fij( t )  mimjm~J2 (15) 

This facilitates the separation of a dimensionless temperature-dependent gen- 
eration function 

gij(T’) = exp [E$T’/(1 + T’)] (16) 

but does not permit removal of the explicit temperature dependence from the 
remaining dimensionless concentration portion of Ge, viz., Fij(t)H’( T’,t ), as 
before,l owing to the presence of function H. 

Both mi and H’(T,t) arise from the dimensionless expressions for the active 
intermediates. In homopolymerization, the concentration of intermediates could 
be expressed solely in terms of initiator concentration and temperature. The 
intermediate concentrations in copolymerization are also functions of these 
factors, and in addition they are dependent upon the composition of the como- 
nomers. As may be noted in the tables, H’(T,t) is a function of the comonomer 
concentrations and must therefore change with time. However, the product of 
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Fig. 2. Predicted runaway boundary with experimental points. 

t I ) a  

mi and H’( T’,t) is a function of concentration ratios. If composition drift in the 
monomer pool is small, then the product of H’(T,t) with mi will become a func- 
tion of temperature only. For the special case of azeotropic copolymerization, 
where comonomer compositions remain fixed with conversion, rniH’( T‘,t ) be- 
comes a function of dimensionless temperature alone. 

IGNITION ANALYSIS 

In our ignition studies of homopolymerizations,l an ignition criterion was 
developed via a Semenov-type analysis. To accomplish this, XR was chosen to 
define dimensionless time, r t / h R ,  which was then used to make the energy 
balance completely dimensionless for subsequent mathematical manipulation. 
The presence of the additional function H does not, per se, preclude the use of 
a Semenov-type analysis here. Rather, it is the complex mathematical form of 
the resulting energy balance. 

Following our homopolymerization analysis, we use XR to make our copolymer 
energy balance completely dimensionless: 

dT’ 2 2 
-= C C fij(r)gij(T’)H’(T’,T) - re(T’) (17) d r  i = l j = 1  

where 

and 
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J 

b 
I I I I I , , I  , I I ’  I I I I 1  , , I  

By the early runaway approximation (ERA), we set all concentrations to their 
feed values with the result that 

f . .  ZJ = (yT..)-l LJ and H’(T’,T) = H’(T’) 
and thus the total heat generation function becomes a function of temperature 
only 
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1 
I t 
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T 
I I 1 I I I l l  I I I I “ 1 ’  7 t’ 4 hr‘ I I  ! I I I I l l !  

( T-TO) /TO 
Fig. 4. Comparison of exact and approximate forms with ERA--S/MMA/BP 

as bef0re.l The IG temperature is then defined as the temperature which 
satisfies the tangency conditions g,(T’) = re(Tf )  and dge/dT‘ = dr,/dT’. While 
the ensuing equations for homopolymerizations 

(21) 

(22) 

yT1 exp [E’T’I(I + T’)] = T’ - Tk 
yT1(l + T’)-2E’ exp [E’T’I(l + T’)] = 1 

are analytically tractable, their counterparts for copolymerizations 
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n 
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u 
0 
w n 

0.8 AN P1MA 

0 GE-EXACT 
+ GE-APPROX. 
A RP-EXACT 
x RP-APPROX. 

T-TO) /TO 
Fig. 5. Comparison of exact and approximate forms with ERA-AN/MMA/DTBP 

are not, owing to the sum of exponentials in temperature, each with a different 
activation energy, multiplied by functions of temperature H‘ and dH‘ldT’. An 
alternate approach is clearly required. 

What we seek is a set of appropriate dimensionless parameters, such as a, B, 
and b, together with relationships in terms of them, such as inequalities (l), (2), 
and (3), which characterize the thermal behavior of copolymerizations. Our 
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I 3 5 7 9 

7; 

Fig. 6. Exact and approximate transition temperature profiles for near azeotropic system. 

technique has been to begin with characteristic times and evolve dimensionless 
groups in terms of these which have intuitive physical meaning. We begin here 
by reexamining our previous definitions of characteristic times. The dimen- 
sionless rate function for homopolymerization was2,3 

R’ = mmAi2 exp [E’T’I(l + T’)] (25) 

and the semidimensionless monomer energy balance w ~ s , ~ , ~  with the LCA, 
- dm/dt = R’/Am (26) 

Since under feed conditions R‘ = (R’)o = 1, it is clear from eq. (26) that A;’ may 
be interpreted as the initial polymerization rate 

A,’ = (- dm/dt)o (27) 
This i s  a somewhat different meaning than the one attached to A, based upon 
its original definition.2 Similarly, from eq. (13) we obtain 

A,’ = (Gel0 (28) 
which indicates that A,’ is the initial heat generation rate. 

We now extend this line of analysis to copolymerizations. Thus, from the total 
monomer balance in shorthand notation 
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70/30 S / A N / B P  

I 93 

c - - I935 

I 3 5 7 9 
t 

Fig. 7. Exact and approximate transition conversion profiles for near azeotropic system. 

we obtain a lumped-parameter version of the characteristic time for monomer 
conversion Am, which may be interpreted as the reciprocal of the initial co- 
polymerization rate 

(30) 
(XdO I (X2)O I ( X d O  I (X2)O- - 

Am12 Am21 Am22 

Similarly, for individual comonomers we obtain 

1 +') = AT1 (31) 

(32) 
(->) d m  =(=+-)=A;'  1 1 

d t  o Am22 

with the relationship among them 

A,' = (Xl)oAT1 + ( x ~ ) o A ~ '  (33) 

and from the thermal energy balance, applying eq. (28), 

= ACl (34) 
1 1 1 1 (G, )o = __ + - + - + - - 

A G l l  AGl2 AG21 AG22 

Concerning the latter, however, it should be pointed out that the key parameter 
in characterizing R-A in homopolymerizations was 

a = A a d / A ~  (35) 
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T, 

Fig. 8. Exact and approximate transition temperature profiles for “hotter” approximate form. 

which contained had 

had Xc/E’ (36) 

as opposed to XG. We recall that Xad was contained in the first term ( R ’ / X a d )  
of the counterpart of eq. (12), obtained by using 0 E’T’ as the dimensionless 
temperature in transforming the thermal energy balance to semidimensionless 
form. Clearly, we cannot define the copolymer version of Xad, viz., A a d ,  simply 
by applying eq. (36) to the definition of AG, eq. (34), because, as previously 
pointed out, no single activation energy or combination of activation energies 
for copolymerization suggests itself as an appropriate substitute for E’. Fur- 
thermore, XR in definition (35) is not simply equal to (Re)o. Consequently, a 
modification of this approach is required. 

We observe from the energy balance for homopolymerizations, obtained by 
substituting eq. (25) into (12), that the required characteristic times Xad and XR 
may be identified in a systematic and consistent fashion as follows: 

so that 

This characterizes R-A as a competition between the degree to which heat gen- 
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5 0 / 5 0  S l A N l B P  

1 9 6  

- E X A C T  
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I; 

Fig. 9. Exact and approximate transition conversion profile for “hotter” approximate form. 

eration rate rises with temperature and the degree to which heat removal rate 
can match that rise. 

bG 
bT‘ 

Applying definition (37) to copolymerizations for which bGJdT’ is 

= [H(T’)Ei;/Xcij(l + T’)2] exp [Ei,T’/(l + T’)] 

dH’ + CC [ ( l l k i j )  exp E;;T’/(l + T’)]  7 bT 
yields, when evaluated under feed conditions where T‘ = 0 and H‘ =. 1, 

(40) 

Thus, we propose that the R-A criterion for copolymerizations is inequality (1) 
with 

a = A,d/XR ( 4 2 )  

Having now defined a copolymer counterpart to R-A parameter a, we proceed 
in a similar manner to define counterparts to parameters B and b in inequalities 
( 2 )  and ( 3 )  which characterize R-A sensitivity (instability) as well as degree of 
reliability of the ERA: 

B A,/h,d ( 4 3 )  

b Xi/& ( 4 4 )  
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I 

Fig. 10. Exact and approximate transition temperature profile for “cooler” approximate form. 

Characteristic times and dimensionless parameters for copolymerizations are 
summarized in Tables VIII and IX. 

AN APPROXIMATE KINETIC MODEL 

As discussed in the results section that follows, numerous computer simula- 
tions as well as experiments have confirmed that the proposed criteria do indeed 
characterize thermal R-A of copolymerizations. We therefore extend our 
analysis of the apparent symmetry of form between homopolymerization and 
copolymerization kinetics in an effort to simplify the complex kinetic models 
for copolymerization. Thus, following the form of the rate function, monomer 
balance and thermal energy balance for homopolymerization, eqs. (25), (26), and 
(12), respectively, we propose the following approximate equations for copoly- 
merizations in place of the corresponding ones in Table VII: 

-d m/d t = R’/ A, (45) 

and 

dT’ldt = R’/AG - (T’ - Th)/XR 

where 

R‘ = mmi/2 exp [E’T’/(l + T’)] 

and 

E‘ A . G / A ~ ~  

(47) 

(48) 
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0 

Fig. 11. Exact and approximate transition conversion profile for “cooler” approximate form. 

It is important to point out that definition (48) follows its homopolymer coun- 
terpart, which is (reference 3, Table VII) 

Eh, = XG/Xad I/E (49) 

These approximate forms for the balance equations are reasonable and should 
certainly be valid during early stages of nonisothermal copolymerizations since 
they are identical to the exact balance equations under initial conditions. 
Furthermore, application of the ERA to approximate eqs. (45)-(47) yields the 
following: 

dm E‘T’ 

dT’ E’T‘ (T’ - T k )  
exp [ E] - dt AR 

GZ - 

which are identical to their homopolymer counterparts used in developing our 
R-A/IG criteria, eqs. (1)-(3), whose ability to characterize the thermal charac- 
teristics of copolymerizations has already been alluded to above. For compar- 
ison, the exact balances for copolymerization with the ERA are, from Table 
VII, 
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RESULTS 
The balance equations in Table VII were solved using a Runge-Kutta nu- 

merical integration technique with variable step-size control. Reaction pa- 
rameters used correspond to various combinations of styrene (S), acrylonitrite 
(AN), and methyl methacrylate (MMA) comonomer as listed in Table X. The 
results, also shown in Table XI, confirm the success of parameter a in predicting 
R-A behavior for a variety of systems. R-A occurs for values in the vicinity of 
a = 2, just as with homopolymerizations. Recall that Semenov analysis predicts 
a critical value of a = e = 2.72.l Simulation studies of homopolymerizations 
showed that this value decreased as the consumption of either reactant became 
a significant factor during the prerunaway (induction) period.3 While either 
monomer or initiator depletion, or both, may cause the critical value of a to de- 
crease, studies involving typical homopolymerization conditions show that ini- 
tiator depletion is far more important in depressing the R-A boundary. Pa- 
rameter b was found to characterize R-A sensitivity (IG) due to initiator depletion 
being rate limiting. Results in Table XI show that the critical value of a de- 
creases as b decreases in the same manner as with homopolymerizations. We 
note that B, which characterizes monomer-limited IG, takes on the same range 
of values as it did for homopolymerization. 

Previous work showed in detail the changes in the runaway boundaries caused 
by various dimensionless  parameter^.^ Of particular interest were the 
boundaries of acr versus b with R as the parameter. In the present study we chose 
two copolymer systems with dimensionless parameters that match those in Figure 
18 of reference 3. Simulation results for the 26/74 WAN and 38/62 ANIMMA 
system were used to generate the boundaries which are shown in Figure 1 along 
with the homopolymer boundary for B = 41. There is close agreement between 
the two copolymer boundaries and the homopolymer boundary. The deviations 
are caused by composition drift during the inducation period. 

The dimensionless criterion a = 2 can be numerically solved to yield TO versus 
[I10 boundaries for specific comonomer-initiator system with known heat transfer 
characteristics. Figure 2 shows such a boundary for benzoyl peroxide-initiated 
70130 S/AN copolymerization. The value of the heat transfer coefficient is 
typical of our thermal ignition point appa ra tu~ .~  Some preliminary experimental 
data points (N and R) for this system are included in the figure. I t  should be 
noted that these dimensional boundaries are sensitive to the choice of kinetic 
mechanism used to describe the copolymerization. 

The strength of our copolymerization parameter groupings in characterizing 
runaway in a manner paralleling homopolymerizations must be tied to the ability 
of approximate forms (50) and (51) to describe eqs. (52) and (53). We evaluated 
the approximate and exact forms of both the rate of heat generation and rate of 
polymerization (after application of ERA). Figures 3-5 show that the approx- 
imations track the exact forms over six decades of change in rate, and over 
temperature variations of nearly 100% from the feed value. 

The most severe test is to compare in detail the temperature and conversion 
histories resulting from integrating the exact, Table VII, and approximate, eqs. 
(45) and (46), balances. We have done this for many systems and found the 
agreement to be highly variable. In all cases, the histories superimpose through 
roughly 20% conversion. Systems with small composition drift show close 
agreement for the complete reaction. Figures 6 and 7 show the transition from 
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runaway to nonrunaway for 70130 SIANIBP, a composition near the azeotrope. 
Even in this region of extreme sensitivity, the approximate equations reproduce 
the reaction profiles. Figures fL11 illustrate the effect of substantial composition 
drift. The approximate profiles may be “hotter,” that is, they run away at less 
severe conditions than the exact ones, Figures 8 and 9, or they may be “cooler,” 
as in Figures 10 and 11. It should be noted that as the polymerization moves 
from the critical point toward either adiabatic or isothermal behavior, the 
agreement between approximate and exact profiles improves. 

This work was supported in part by a grant from the National Science Foundation (ENG- 
7605053). 

List of Symbols 

dimensionless runaway parameter, see eqs. (35) and (42) 
wetted area 
concentration of monomer 1 
concentration of monomer 2, see eq. (43) 
dimensionless monomer sensitivity parameter, see eq. (44) 
dimensionless initiator sensitivity parameter 
activation energy 
concentration forcing function, see eqs. (15) and (18) 
effective generation function 
explicitly temperature dependent generation function, see eq. (16) 
enthalpy of reaction 
termination function defined in Table IV 
initiator concentration 
rate constant 
dimensionless initiator concentration [mo]l[mo]o, where [mo] = 2 [ I ]  
dimensionless monomer concentration [m]l[m]o 
reaction rate function 
effective heat removal function, see eq. (19) 
temperature 
reservoir temperature 
time 
volume 

Greek Symbols 
Y T  ~ / A R  
A 
x characteristic time 
A lumped overall characteristic time 
cp 

Subscripts 
ad adiabatic 
G heat generation 
1 

0 initial condition 
P propagation 

penultimate termination ratio defined in Table IX 

phi-factor for cross termination, see eq. (5) 

initiation (when not a numerical index) 
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R heat removal 
t termination 

Superscripts 
dimensionless quantity 
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